Compression of Khalimsky topological spaces
نویسندگان
چکیده
منابع مشابه
Digitization in Khalimsky spaces
We consider the digital plane of integer points equipped with the Khalimsky topology. We suggest a digitization of straight lines such that the digitized image is homeomorphic to the Khalimsky line and a digitized line segment is a Khalimsky arc. It is demonstrated that a Khalimsky arc is the digitization of a straight line segment if and only if it satisfies a generalized version of the chord ...
متن کاملDigital Geometry and Khalimsky Spaces
Melin, E. 2008. Digital Geometry and Khalimsky Spaces (Digital geometri och Khalimskyrum). Uppsala Dissertations in Mathematics 54. vii+47 pp. Uppsala. ISBN 978-91-506-1983-6 Digital geometry is the geometry of digital images. Compared to Euclid’s geometry, which has been studied for more than two thousand years, this field is very young. Efim Khalimsky’s topology on the integers, invented in t...
متن کاملContinuous digitization in Khalimsky spaces
A real-valued function defined on R can sometimes be approximated by a Khalimsky-continuous mapping defined on Z. We elucidate when this can be done and give a construction for the approximation. This approximation can be used to define digital Khalimsky hyperplanes that are topological embeddings of Z into Z. In particular, we consider Khalimsky planes in Z and show that the intersection of tw...
متن کاملContractibility and fixed point property: the case of Khalimsky topological spaces
*Correspondence: [email protected] Institute of Pure and Applied Mathematics, Department of Mathematics Education, Chonbuk National University, Jeonju-City, Jeonbuk 54896, Republic of Korea Abstract Based on the notions of both contractibility and local contractibility, many works were done in fixed point theory. The present paper concerns a relation between digital contractibility and the exist...
متن کاملREDUNDANCY OF MULTISET TOPOLOGICAL SPACES
In this paper, we show the redundancies of multiset topological spaces. It is proved that $(P^star(U),sqsubseteq)$ and $(Ds(varphi(U)),subseteq)$ are isomorphic. It follows that multiset topological spaces are superfluous and unnecessary in the theoretical view point.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2012
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1206101k